

## OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

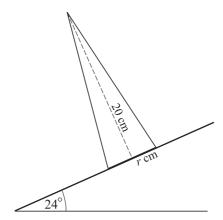
MATHEMATICS 4729

Mechanics 2

Wednesday 22 JUNE 2005 Afternoon 1 hour 30 minutes

Additional materials:
Answer booklet
Graph paper
List of Formulae (MF1)

TIME 1 hour 30 minutes


## **INSTRUCTIONS TO CANDIDATES**

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- The acceleration due to gravity is denoted by  $g \, \text{m s}^{-2}$ . Unless otherwise instructed, when a numerical value is needed, use g = 9.8.
- You are permitted to use a graphical calculator in this paper.

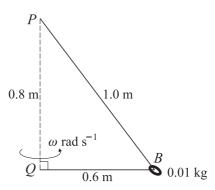
## **INFORMATION FOR CANDIDATES**

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72.
- Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.
- You are reminded of the need for clear presentation in your answers.

1



A uniform solid cone has vertical height 20 cm and base radius r cm. It is placed with its axis vertical on a rough horizontal plane. The plane is slowly tilted until the cone topples when the angle of inclination is  $24^{\circ}$  (see diagram).


(i) Find r, correct to 1 decimal place. [4]

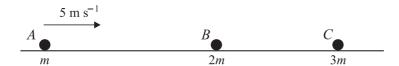
A uniform solid cone of vertical height 20 cm and base radius 2.5 cm is placed on the plane which is inclined at an angle of  $24^{\circ}$ .

(ii) State, with justification, whether this cone will topple. [1]

A particle is projected horizontally with a speed of 6 m s<sup>-1</sup> from a point 10 m above horizontal ground. The particle moves freely under gravity. Calculate the speed and direction of motion of the particle at the instant it hits the ground. [6]

3




One end of a light inextensible string of length 1.6 m is attached to a point P. The other end is attached to the point Q, vertically below P, where PQ = 0.8 m. A small smooth bead B, of mass 0.01 kg, is threaded on the string and moves in a horizontal circle, with centre Q and radius 0.6 m. QB rotates with constant angular speed  $\omega$  rad s<sup>-1</sup> (see diagram).

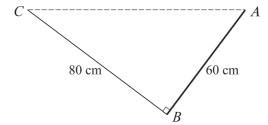
(i) Show that the tension in the string is 0.1225 N. [3]

(ii) Find  $\omega$ . [3]

(iii) Calculate the kinetic energy of the bead. [2]






Three smooth spheres A, B and C, of equal radius and of masses  $m \log_2 2m \log_3 2m$ 

- (i) Find the coefficient of restitution between A and B. [4]
- (ii) Find, in terms of m, the magnitude of the impulse that A exerts on B, and state the direction of this impulse.

Sphere B subsequently collides with sphere C which is stationary. As a result of this impact B and C coalesce.

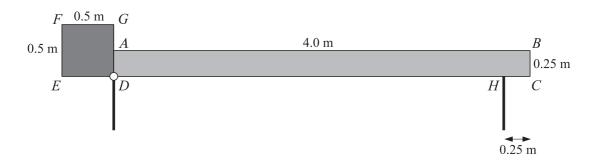
(iii) Show that there will be another collision.

5



A uniform rod AB of length 60 cm and weight 15 N is freely suspended from its end A. The end B of the rod is attached to a light inextensible string of length 80 cm whose other end is fixed to a point C which is at the same horizontal level as A. The rod is in equilibrium with the string at right angles to the rod (see diagram).

- (i) Show that the tension in the string is 4.5 N. [4]
- (ii) Find the magnitude and direction of the force acting on the rod at A. [6]
- A car of mass 700 kg is travelling up a hill which is inclined at a constant angle of  $5^{\circ}$  to the horizontal. At a certain point *P* on the hill the car's speed is  $20 \,\mathrm{m\,s^{-1}}$ . The point *Q* is  $400 \,\mathrm{m}$  further up the hill from *P*, and at *Q* the car's speed is  $15 \,\mathrm{m\,s^{-1}}$ .
  - (i) Calculate the work done by the car's engine as the car moves from P to Q, assuming that any resistances to the car's motion may be neglected. [4]

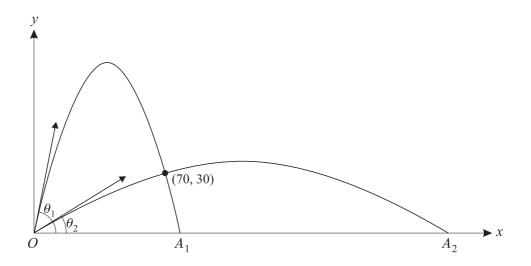

Assume instead that the resistance to the car's motion between P and Q is a constant force of magnitude 200 N.

- (ii) Given that the acceleration of the car at Q is zero, show that the power of the engine as the car passes through Q is 12.0 kW, correct to 3 significant figures. [3]
- (iii) Given that the power of the car's engine at P is the same as at Q, calculate the car's retardation at P.

4729/S05 **[Turn over** 

[3]

7




A barrier is modelled as a uniform rectangular plank of wood, ABCD, rigidly joined to a uniform square metal plate, DEFG. The plank of wood has mass  $50 \, \text{kg}$  and dimensions  $4.0 \, \text{m}$  by  $0.25 \, \text{m}$ . The metal plate has mass  $80 \, \text{kg}$  and side  $0.5 \, \text{m}$ . The plank and plate are joined in such a way that CDE is a straight line (see diagram). The barrier is smoothly pivoted at the point D. In the closed position, the barrier rests on a thin post at H. The distance CH is  $0.25 \, \text{m}$ .

In the open position, the centre of mass of the barrier is vertically above D.

- (ii) Calculate the angle between AB and the horizontal when the barrier is in the open position. [8]
- 8 A particle is projected with speed  $49 \,\mathrm{m\,s}^{-1}$  at an angle of elevation  $\theta$  from a point O on a horizontal plane, and moves freely under gravity. The horizontal and upward vertical displacements of the particle from O at time t seconds after projection are x m and y m respectively.
  - (i) Express x and y in terms of  $\theta$  and t, and hence show that

$$y = x \tan \theta - \frac{x^2 (1 + \tan^2 \theta)}{490}.$$
 [4]



The particle passes through the point where x = 70 and y = 30. The two possible values of  $\theta$  are  $\theta_1$  and  $\theta_2$ , and the corresponding points where the particle returns to the plane are  $A_1$  and  $A_2$  respectively (see diagram).

(ii) Find 
$$\theta_1$$
 and  $\theta_2$ . [4]

(iii) Calculate the distance between 
$$A_1$$
 and  $A_2$ . [5]

| 1 | (i)  | use of h/4                          | B1  |   |                               |   |
|---|------|-------------------------------------|-----|---|-------------------------------|---|
|   |      | com vert above lowest pt of contact | B1  |   | can be implied                |   |
|   |      | $r = 5 x \tan 24^{\circ}$           | M1  |   |                               |   |
|   |      | r = 2.2                             | A1  | 4 | 2.226                         |   |
|   | (ii) | No & valid reason (eg 24°326.6°)    | B1√ | 1 | $\int$ Yes if their $r = 2.5$ | 5 |

| 2 | $v^2 = 2x9.8x10$              | M1 |   | energy:½mv²=½mu² + mgh                     | T |
|---|-------------------------------|----|---|--------------------------------------------|---|
|   | v = 14                        | A1 |   | $\frac{1}{2}v^2 = \frac{1}{2}.36 + 9.8x10$ |   |
|   | speed = $\sqrt{(14^2 + 6^2)}$ | M1 | T | (must be $6^2$ ) $v^2 = 36 + 196 = 232$    |   |
|   | speed = 15.2 ms <sup>-1</sup> | A1 |   |                                            |   |
|   | $\tan\theta = 14/6$           | M1 |   | cos <sup>-1</sup> (6/15.2) etc             |   |
|   | θ=66.8°(below) horiz.         | A1 | 6 | or 23.2° to the vertical                   | 6 |

| 3 | (i)   | $T\cos\theta = 0.01 \text{ x } 9.8$         | M1  |   | resolving vertically                    |   |
|---|-------|---------------------------------------------|-----|---|-----------------------------------------|---|
|   |       | $8/10T = 0.01 \times 9.8$                   | A1  |   | with $\cos\theta = 8/10$                |   |
|   |       | T = 0.1225  N                               | A1  | 3 | AG                                      |   |
|   | (ii)  | $T + T\sin\theta = ma$                      | M1  |   | resolving horizontally                  |   |
|   |       | use of $mr\omega^2$                         | M1  |   |                                         |   |
|   |       | $\omega = 5.72 \text{ rads}^{-1}$           | A1  | 3 |                                         |   |
|   | (iii) | K.E.= $\frac{1}{2}$ x0.01x(rω) <sup>2</sup> | M1  |   | ½mv² with v=rw                          |   |
|   |       | K.E.= 0.0588                                | A1√ | 2 | $\int 0.0018 \text{ x their } \omega^2$ | 8 |

| 4 | (i)   | 5m = mu + 4m  | M1 |   | cons. of mom. |   |
|---|-------|---------------|----|---|---------------|---|
|   |       | u = 1         | A1 |   |               |   |
|   |       | e = (2-1)/5   | M1 |   |               |   |
|   |       | e = 🗐         | A1 | 4 |               |   |
|   | (ii)  | I = 4m        | B1 |   |               |   |
|   |       | $\rightarrow$ | B1 | 2 | to the right  |   |
|   | (iii) | 4m = 5mv      | M1 |   |               |   |
|   |       | v = 🖭         | A1 |   |               |   |
|   |       | ⊕<1           | B1 | 3 |               | 9 |

| 5 | (i)  | $60T = 15x30\cos\theta$                                                                                             | M1  |   | moments about A                                |    |  |
|---|------|---------------------------------------------------------------------------------------------------------------------|-----|---|------------------------------------------------|----|--|
|   |      |                                                                                                                     | A1  |   |                                                |    |  |
|   |      | $60T = 15x30 \times 0.6$                                                                                            | A1  |   | $\cos\theta = 0.6$                             |    |  |
|   |      | T = 4.5 N                                                                                                           | A1  | 4 | AG                                             |    |  |
|   | (ii) | $X = T\sin\theta$                                                                                                   | M1  |   | res. horiz. (or moments)                       |    |  |
|   |      | X = 3.6  N                                                                                                          | A1  |   |                                                |    |  |
|   |      | $Y + T\cos\theta = 15$                                                                                              | M1  |   | res. vert.(3 terms) (or moments)               |    |  |
|   |      | Y = 12.3  N                                                                                                         | A1  |   |                                                |    |  |
|   |      | R = 12.8  N                                                                                                         | A1√ |   | $\int (\text{their } X^2 + Y^2)$               |    |  |
|   |      | 73.7° to horizontal                                                                                                 | A1√ | 6 | or 16.3° to vert.√tan <sup>-1</sup> their(Y/X) | 10 |  |
|   |      | or triangle of forces: Triangle (M1) $R^2 = 15^2 + 4.5^2 - 2x4.5x15x0.6(M1A1)$                                      |     |   |                                                |    |  |
|   |      | $R = 12.8 \text{ (A1) } \sin\theta/4.5 = \sin\alpha/12.8 \text{ (M1) } \theta = 16.3^{\circ} \text{ to vert. (A1)}$ |     |   |                                                |    |  |

| 6        | (i)               | 1/2.700.20 <sup>2</sup> or 1/2.700.15 <sup>2</sup>     | B1                |                | either K.E.                                                                                                |    |
|----------|-------------------|--------------------------------------------------------|-------------------|----------------|------------------------------------------------------------------------------------------------------------|----|
|          |                   | 700x9.8x400sin5°                                       | B1                |                | correct P.E.                                                                                               |    |
|          |                   | ½.700.15 <sup>2</sup> +700.9.8.400sin5°=               | M1                |                | for 4 terms with W.D.                                                                                      |    |
|          |                   | $\frac{1}{2}$ .700.20 <sup>2</sup> + W.D.              |                   |                |                                                                                                            |    |
|          |                   | W.D. = 178,000 J                                       | Al                | 4              | or 178 kJ                                                                                                  |    |
|          | (ii)              | D=200 + 700.9.8sin5°                                   | M1                |                |                                                                                                            |    |
|          |                   | D = 798 N                                              | A1                |                | may be implied                                                                                             |    |
|          |                   | P = Dx15 = 12,000 = 12kW                               | A1                | 3              | AG (11,968W)                                                                                               |    |
|          | (iii)             | $D' = 11,968 \div 20 = 598$                            | M1                |                |                                                                                                            |    |
|          |                   | D'-700.9.8sin5°-200 = 700a                             | M1                |                |                                                                                                            |    |
|          |                   | $a = 0.285 \text{ ms}^{-2} \text{ (±)}$                | A1                | 3              | allow 0.283 (from 12kW)                                                                                    | 10 |
|          |                   | Alternative for false assumption                       |                   | ļ              | of constant acceleration                                                                                   |    |
|          | (i)               | D-700 x 9.8sin5° = 700a and $15^2 = 20^2 + 2a$ . 400   | M1                |                | (D = 445, a = -0.21875)                                                                                    |    |
|          |                   | W.D. = 400xD = 178,000                                 | A1                |                | 2 marks (out of 4)                                                                                         |    |
|          |                   |                                                        |                   |                | maximum                                                                                                    |    |
|          |                   |                                                        |                   |                |                                                                                                            |    |
| 7        | (i)               | 50x9.8x2 = Rx3.75 + 80x9.8x0.25                        | M1                |                | moments about D.                                                                                           |    |
|          |                   | 46                                                     | A1                |                | SR/no g/R = 21.3                                                                                           |    |
|          |                   |                                                        |                   |                | (M1A1A0)                                                                                                   |    |
|          | 1,                | R = 209 N                                              | A1                | 3              | 1                                                                                                          |    |
|          | (ii)              | $130\overline{x} = 50x2 + 80x4.25$                     | M1                |                | moments about BC or                                                                                        |    |
|          |                   |                                                        | A1                |                | FE                                                                                                         |    |
|          | ļ                 | $\overline{x} = 3.385$                                 | A1                |                | $\begin{array}{c c} 130 \overline{x} = 80 \times 0.25 + 50 \times 2.5 \\ \overline{x} = 1.115 \end{array}$ |    |
|          | -                 | $130  \overline{y} = 50 \times 0.125 + 80 \times 0.25$ | $\frac{A_1}{M_1}$ |                | moments about EC                                                                                           |    |
|          |                   | $  130 y - 30 \times 0.123 + 80 \times 0.23  $         | Al                |                | moments about EC                                                                                           |    |
|          |                   | $\bar{y} = 0.202$                                      | Al                |                |                                                                                                            |    |
|          | -                 | -                                                      |                   |                |                                                                                                            |    |
|          | <del> </del>      | $\tan\theta = 0.615/0.202$                             | M1                | 0              | 71 (0 / 72 00                                                                                              | 11 |
|          |                   | $\theta = 71.8^{\circ}$ to the horizontal              | A1                | 8              | 71.6° to 72.0°                                                                                             | 11 |
| 8        | (i)               | $x = 49\cos\theta$ . t                                 | B1                |                |                                                                                                            | 1  |
|          | 107               | $y=49\sin\theta.t - \frac{1}{2}.9.8.t^2$               | B1                | <del> </del>   |                                                                                                            |    |
|          |                   | $y = x \tan\theta - 4.9x^2/49^2 \cdot \cos^2\theta$    | M                 | <del> </del> - | aef (eliminating t)                                                                                        |    |
|          |                   |                                                        | 1                 |                | der (eminating t)                                                                                          |    |
|          |                   | $y=x\tan\theta-x^2(1+\tan^2\theta)/490$                | A1                | 4              | AG                                                                                                         |    |
| <u> </u> | $\overline{(ii)}$ | $30 = 70\tan\theta - 10(1+\tan^2\theta)$               | M                 | 1              |                                                                                                            |    |
|          | (**)              |                                                        | 1                 |                |                                                                                                            |    |
|          |                   | $\tan\theta = (70 \pm \sqrt{3300}) \div 20$            | M                 |                | (6.37/0.628)                                                                                               |    |
|          |                   |                                                        | 1                 |                | , , , , , , , , , , , , , , , , , , , ,                                                                    |    |
|          |                   | 81.1°                                                  | A1                |                | $\theta_1$ or $\theta_2$                                                                                   |    |
|          |                   | 32.1°                                                  | A1                | 4              | "                                                                                                          |    |
|          | (iii)             | $x^2(1+\tan^2\theta)/490 = x\tan\theta$                | M                 |                | set y = 0                                                                                                  |    |
|          |                   | ,                                                      | 1                 |                |                                                                                                            |    |
|          |                   | $x = 490 \tan \theta / (1 + \tan^2 \theta)$            | A1                |                |                                                                                                            |    |
|          |                   | x = 75.0                                               | A1                |                |                                                                                                            |    |

|       | x = 221 (220.6)                         | A1 |   |                                         |    |
|-------|-----------------------------------------|----|---|-----------------------------------------|----|
|       | d = 146 m                               | A1 | 5 | <b>√</b>                                | 13 |
|       |                                         | 1  |   |                                         |    |
|       |                                         |    |   |                                         |    |
| (iii) | Alternatively (1 <sup>st</sup> 2 marks) |    |   |                                         |    |
|       | $t=49\sin\theta/4.9$ and $(9.88/5.31)$  | M  |   | s=ut+½at² and                           |    |
|       | $x=49\cos\theta.t$                      | 1  |   | $x=49\cos\theta.t$                      |    |
|       |                                         |    |   | or $R = u^2 \sin 2\theta / g$ (precise) |    |
|       | $x = 490\sin\theta\cos\theta$           | A1 |   | 245sin2θ                                |    |